PANDORA-seq
为了克服小RNA建库中的问题从而系统地发掘这些带有特定RNA修饰的小RNA,2021年4月5日,陈琦教授研究组在Nature Cell Biology杂志上发表了文章PANDORA-seq expands the repertoire of regulatory small RNAs by over-coming RNA modifications,建立了一套新的小RNA测序及分析流程PANDORA-seq,利用T4PNK 和AlkB对15-50nt区段的小RNA进行酶学处理,以去甲基化RNA修饰(例如,m1G, m1A, m3C和m22G)和促进接头连接的方式(将3’-P或者2’3’-cP 转换为3’-OH; 并添加5’-P)实现逆转录,解决了这些修饰妨碍逆转录酶通过的问题。PANDORA-seq优于传统测序以及使用单个AlkB或T4PNK处理后的测序结果,能够更广泛、更准确的在人类和小鼠组织、细胞中发现先前未知的含有特殊修饰的sncRNA。新方法鉴定了修饰sncRNAs主要是转移RNA来源的小RNA(tsRNAs)和核糖体RNA来源的小RNA(rsRNAs),这些以前未被检测到,在小鼠大脑、肝脏、脾脏和成熟精子中表现出组织特异性表达,以及在小鼠胚胎干细胞(mESCs)和人的HeLa细胞中表现出细胞特异性表达。PANDORA-seq揭示了体细胞向诱导多能干细胞(iPSCs)生成过程中前所未有的miRNA、tsRNA和rsRNA动态,以探究在胚胎干细胞(ESC)分化过程中的功能[14]。
图2. 小鼠脑组织、小鼠肝脏、小鼠成熟精子、小鼠胚胎干细胞和人的HeLa细胞的小RNA测序结果(Traditional vs PANDORA-seq)
研究案例三
A tRNA-derived small RNA regulates ribosomal protein S28 protein levels after translation initiation in humans and mice[17]
中文题目:tRNA来源的小RNA调节人和小鼠翻译启动后核糖体蛋白S28蛋白的水平
发表时间:2019-12-17
发表期刊:Cell reports
影响因子:9.995
DOI:10.1016/j.celrep.2019.11.062
tRNA衍生的小RNA(tsRNAs)参与了许多细胞过程,然而具体的生物学机制还不是很清楚。以往研究发现Leu-CAG tRNA衍生小RNA (LeuCAG3′tsRNA)的3’端通过维持RPS28蛋白的水平来调节核糖体的生物发生。tsRNA可以结合核糖体蛋白RPS28的 mRNA,改变其二级结构并增强翻译。研究发现在灵长类动物中存在功能性的3’UTR靶点,而在许多脊椎动物中存在CDS靶点。接着,证明了tsRNA可以通过与CDS靶点相互作用来调节小鼠Rps28翻译。作者进一步证明在两个物种中mRNA翻译的变化发生在启动后的一个步骤中。本研究结果表明LeuCAG3′tsRNA可能通过一种保守的基因调控机制维持脊椎动物核糖体的生物发生。
tRF-Gln-CTG-026 ameliorates liver injury by alleviating global protein synthesis[19]
中文题目:TRF-Gln-CTG-026减弱整体蛋白合成以改善肝损伤
发表时间::2023-04-03
发表期刊:Signal transduction and targeted therapy
影响因子:38.104
DOI:10.1038/s41392-023-01351-5
tsRNAs(tRNA衍生的小RNA)作为应激反应的产物,在应激反应和损伤调节中发挥着重要的作用。然而,在很大程度上仍不清楚tsRNAs是否可以改善肝脏损伤。基于此,作者利用NSUN2(NOP2/Sun结构域家族)的缺失作为tsRNAs生成模型,展示了tsRNAs在减轻肝损伤中的作用。NSUN2缺失减少了tRNAs的甲基尿苷(methyluridine-U5 ,m5U)和胞嘧啶C5(m5C),随后产生各种tsRNAs,特别是I类tsRNAs(TRF-1s)。通过进一步筛选,作者发现TRF-Gln-CTG-026(tG026)是最理想的tRF-1,它通过减弱TSR1与Pre-40S核糖体的结合来抑制总蛋白的合成,从而减轻肝损伤。这项研究表明tsRNA减少总蛋白合成在肝脏损伤和修复中的潜力,为肝脏损伤提供了一种潜在的治疗策略。
参考文献
1. Taft, R.J., et al., Non‐coding RNAs: regulators of disease. The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland, 2010. 220(2): p. 126-139.
2. Hu, F., et al., tsRNA-5001a promotes proliferation of lung adenocarcinoma cells and is associated with postoperative recurrence in lung adenocarcinoma patients. Translational Lung Cancer Research, 2021. 10(10): p. 3957.
3. Cable, J., et al., Noncoding RNAs: biology and applications—a Keystone Symposia report. Annals of the New York Academy of Sciences, 2021. 1506(1): p. 118-141.
4. Hindorff, L.A., et al., Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proceedings of the National Academy of Sciences, 2009. 106(23): p. 9362-9367.
5. Ricano-Ponce, I. and C. Wijmenga, Mapping of immune-mediated disease genes. Annual review of genomics and human genetics, 2013. 14: p. 325-353.
6. Esteller, M., Non-coding RNAs in human disease. Nature reviews genetics, 2011. 12(12): p. 861-874.
7. Babski, J., et al., Small regulatory RNAs in archaea. RNA biology, 2014. 11(5): p. 484-493.
8. Kiss, T., Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functions. Cell, 2002. 109(2): p. 145-148.
9. Lindsay, M.A., et al., Small nucleolar RNAs and RNA-guided post-transcriptional modification. Essays in biochemistry, 2013. 54: p. 53-77.
10. Tycowski, K.T., M.-D. Shu, and J.A. Steitz, A mammalian gene with introns instead of exons generating stable RNA products. Nature, 1996. 379(6564): p. 464-466.
11. Zhou, F., et al., AML1-ETO requires enhanced C/D box snoRNA/RNP formation to induce self-renewal and leukaemia. Nature cell biology, 2017. 19(7): p. 844-855.
12.Zhang, B., et al., Changes in snoRNA and snRNA abundance in the human, chimpanzee, macaque, and mouse brain. Genome biology and evolution, 2016. 8(3): p. 840-850.
13. Shigematsu, M. and Y. Kirino, Making invisible RNA visible: discriminative sequencing methods for RNA molecules with specific terminal formations. Biomolecules, 2022. 12(5): p. 611.
14. Shi, J., et al., PANDORA-seq expands the repertoire of regulatory small RNAs by overcoming RNA modifications. Nature cell biology, 2021. 23(4): p. 424-436.
15.Liu, J., et al., Paternal phthalate exposure-elicited offspring metabolic disorders are associated with altered sperm small RNAs in mice. Environment International, 2023. 172: p. 107769.
16. Kim, H.K., et al., A transfer-RNA-derived small RNA regulates ribosome biogenesis. Nature, 2017. 552(7683): p. 57-62.
17. Kim, H.K., et al., A tRNA-derived small RNA regulates ribosomal protein S28 protein levels after translation initiation in humans and mice. Cell reports, 2019. 29(12): p. 3816-3824. e4.
18. Sun, Y.H., et al., Ribosomes guide pachytene piRNA formation on long intergenic piRNA precursors. Nature cell biology, 2020. 22(2): p. 200-212.
19. Ying, S., et al., tRF-Gln-CTG-026 ameliorates liver injury by alleviating global protein synthesis. Signal Transduction and Targeted Therapy, 2023. 8(1): p. 144.